PyTorch 模型构建
wangzf / 2022-08-13
目录
模型创建简介
使用 PyTorch 通常有三种方式构建模型:
- 使用
torch.nn.Sequential
按层顺序构建模型add_module
方法
- 继承
torch.nn.Module
基类构建自定义模型- 实现
forward
方法
- 实现
- 继承
torch.nn.Module
基类构建模型并辅助应用模型容器进行封装torch.nn.Sequential
torch.nn.ModuleList
torch.nn.ModuleDict
使用 Sequential 按层顺序构建模型
使用 nn.Sequential
按层顺序构建模型无需定义 forward
方法,仅仅适用于简单的模型
add_module 方法
import torch.nn as nn
from torchkeras import summary
net = nn.Sequential()
net.add_module("conv1", nn.Conv2d(
in_channels = 3,
out_channels = 32,
kernel_size = 3
))
net.add_module("pool1", nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2", nn.Conv2d(
in_channels = 32,
out_channels = 64,
kernel_size = 5
))
net.add_module("pool2", nn.MaxPool2d(kernel_size = 2, stride = 2))
net.add_module("dropout", nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool", nn.AdaptiveMaxPool2d((1, 1)))
net.add_module("flatten", nn.Flatten())
net.add_module("linear1", nn.Linear(64, 32))
net.add_module("relu", nn.ReLU())
net.add_module("linear2", nn.Linear(32, 1))
print(net)
summary(net, input_shape = (3, 32, 32))
变长参数
- 不能给每个层指定名称
import torch.nn as nn
from torchkeras import summary
net = nn.Sequential(
nn.Conv2d(in_channels = 3, out_channels = 32, kernel_size = 3),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = 5),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Dropout2d(p = 0.1),
nn.AdaptiveMaxPool2d((1, 1)),
nn.Flatten(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
)
print(net)
summary(net, input_shape = (3, 32, 32))
OrderedDict
import torch.nn as nn
from torchkeras import summary
from collections import OrderedDict
net = nn.Sequential(
OrderedDict([
("conv1", nn.Conv2d(
in_channels = 3,
out_channels = 32,
kernel_size = 3
)),
("pool1", nn.MaxPool2d(kernel_size = 2, stride = 2)),
("conv2", nn.Conv2d(
in_channels = 32,
out_channels = 64,
kernel_size = 5
)),
("pool2", nn.MaxPool2d(kernel_size = 2, stride = 2)),
("dropout", nn.Dropout2d(p = 0.1)),
("adaptive_pool", nn.AdaptiveMaxPool2d((1, 1))),
("flatten", nn.Flatten()),
("linear1", nn.Linear(64, 32)),
("relu", nn.ReLU()),
("linear2", nn.Linear(32, 1)),
])
)
print(net)
summary(net, input_shape = (3, 32, 32))
继承 nn.Module
import torch.nn as nn
from torchkeras import summary
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(
in_channels = 3,
out_channels = 32,
kernel_size = 3
)
self.pool1 = nn.MaxPool2d(kernel_size = 2, stride = 2)
self.conv2 = nn.Conv2d(
in_channels = 32,
out_channels = 64,
kernel_size = 5
)
self.pool2 = nn.MaxPool2d(kernel_size = 2, stride = 2)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1, 1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64, 32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32, 1)
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
y = self.linear2(x)
return y
# model
net = Net()
print(net)
summary(net, input_shape = (3, 32, 32))
继承 nn.Module 基类并应用模型容器
当模型的结构比较复杂时,可以应用模型容器 nn.Sequential
、nn.ModuleList
、
nn.ModuleDict
对模型的部分结构进行封装。
这样做会让模型整体更加有层次感,有时候也能减少代码量。
模型容器的使用是非常灵活的,可以在一个模型中任意组合任意嵌套使用
nn.Sequential
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels = 3, out_channels = 32, kernel_size = 3
),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Conv2d(
in_channels = 32, out_channels = 64, kernel_size = 5
),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Dropout2d(p = 0.1),
nn.AdaptiveMaxPool2d((1, 1)),
)
self.dense = nn.Sequential(
nn.Flatten(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
)
def forward(self, x):
x = self.conv(x)
y = self.dense(x)
return y
net = Net()
print(net)
nn.ModuleList
nn.ModuelList
不能用 Python 中的 List 代替
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.layer_list = nn.ModuleList([
nn.Conv2d(
in_channels = 3, out_channels = 32, kernel_size = 3
),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Conv2d(
in_channels = 32, out_channels = 64, kernel_size = 5
),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Dropout2d(p = 0.1),
nn.AdaptiveMaxPool2d((1, 1)),
nn.Flatten(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
])
def forward(self, x):
for layer in self.layer_list:
x = layer(x)
return x
net = Net()
print(net)
nn.ModuleDict
nn.ModuleDict
不能用 Python 中的 Dict 代替
import torch
from torch import nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.layers_dict = nn.ModuleDict({
"conv1": nn.Conv2d(
in_channels = 3, out_channels = 32, kernel_size = 3
),
"pool": nn.MaxPool2d(kernel_size = 2, stride = 2),
"conv2": nn.Conv2d(
in_channels = 32, out_channels = 64, kernel_size = 5
),
"dropout": nn.Dropout2d(p = 0.1),
"adaptive": nn.AdaptiveMaxPool2d((1, 1)),
"flatten": nn.Flatten(),
"linear1": nn.Linear(64, 32),
"relu": nn.ReLU(),
"linear2": nn.Linear(32, 1),
})
def forward(self, x):
layers = [
"conv1",
"pool",
"conv2",
"pool",
"dropout",
"adaptive",
"flatten",
"linear",
"relu",
"linear2",
]
for layer in layers:
x = self.layers_dict[layer](x)
return x
net = Net()
print(net)