logo

pmdarima

Auto ARIMA

wangzf / 2022-11-12


目录

安装及加载

依赖

PyPI

$ pip install pmdarima

Conda

$ conda config --add channels conda-forge
$ conda config --set channel_priority strict
$ conda install pmdarima

常规使用方式

import pmdarima as pm
from pmdarima.arima import auto_arima

API

import pmdarima as pm

arima

from pmdarima import arima

datasets

from pydarima import datasets

metrics

from pmdarima import metrics
import numpy as np

y_true = np.array([0.07533, 0.07533, 0.07533, 0.07533, 0.07533, 0.07533, 0.0672, 0.0672]) 
y_pred = np.array([0.102, 0.107, 0.047, 0.1, 0.032, 0.047, 0.108, 0.089])

smape = metrics.smape(y_true, y_pred)
print(smape)
42.60306631890196

model_selection

from pydarima import model_selection

pipeline

from pydarima.pipeline import Pipeline

preprocessing

from pydarima import preprocessing

utils

from pydarima import utils

快速开始

创建 Array

import pmdarima as pm

# array like vector in R
x = pm.c(1, 2, 3, 4, 5, 6, 7)
print(x)
[1 2 3 4 5 6 7]

ACF 和 PACF

import pmdarima as pm

# acf
x_acf = pm.acf(x)
print(x_acf)

pm.plot_acf(x)
[ 1.0  0.57142857  0.17857143 -0.14285714 -0.35714286 -0.42857143 -0.32142857]

img

import pmdarima as pm

# pacf
x_pacf = pm.pacf(x)
print(x_pacf)

pm.plot_pacf(x)

Auto-ARIMA

载入依赖库

import numpy as np

from pmdarima.datasets import load_wineind
import pmdarima as pm

数据

# data
wineind = load_wineind().astype(np.float64)
wineind
array([15136., 16733., 20016., 17708., 18019., 19227., 22893., 23739.,
       21133., 22591., 26786., 29740., 15028., 17977., 20008., 21354.,
       19498., 22125., 25817., 28779., 20960., 22254., 27392., 29945.,
       16933., 17892., 20533., 23569., 22417., 22084., 26580., 27454.,
       24081., 23451., 28991., 31386., 16896., 20045., 23471., 21747.,
       25621., 23859., 25500., 30998., 24475., 23145., 29701., 34365.,
       17556., 22077., 25702., 22214., 26886., 23191., 27831., 35406.,
       23195., 25110., 30009., 36242., 18450., 21845., 26488., 22394.,
       28057., 25451., 24872., 33424., 24052., 28449., 33533., 37351.,
       19969., 21701., 26249., 24493., 24603., 26485., 30723., 34569.,
       26689., 26157., 32064., 38870., 21337., 19419., 23166., 28286.,
       24570., 24001., 33151., 24878., 26804., 28967., 33311., 40226.,
       20504., 23060., 23562., 27562., 23940., 24584., 34303., 25517.,
       23494., 29095., 32903., 34379., 16991., 21109., 23740., 25552.,
       21752., 20294., 29009., 25500., 24166., 26960., 31222., 38641.,
       14672., 17543., 25453., 32683., 22449., 22316., 27595., 25451.,
       25421., 25288., 32568., 35110., 16052., 22146., 21198., 19543.,
       22084., 23816., 29961., 26773., 26635., 26972., 30207., 38687.,
       16974., 21697., 24179., 23757., 25013., 24019., 30345., 24488.,
       25156., 25650., 30923., 37240., 17466., 19463., 24352., 26805.,
       25236., 24735., 29356., 31234., 22724., 28496., 32857., 37198.,
       13652., 22784., 23565., 26323., 23779., 27549., 29660., 23356.])

训练模型

# 拟合 stepwise auto-ARIMA
stepwise_fit = pm.auto_arima(
    y = wineind,
    start_p = 1,
    start_q = 1,
    max_p = 3,
    max_q = 3,
    seasonal = True,
    d = 1,
    D = 1,
    trace = True,
    error_action = "ignore",
    suppress_warnings = True,  # 收敛信息
    stepwise = True,
)
Performing stepwise search to minimize aic
 ARIMA(1,1,1)(0,0,0)[0] intercept   : AIC=3508.854, Time=0.17 sec
 ARIMA(0,1,0)(0,0,0)[0] intercept   : AIC=3587.776, Time=0.01 sec
 ARIMA(1,1,0)(0,0,0)[0] intercept   : AIC=3573.940, Time=0.01 sec
 ARIMA(0,1,1)(0,0,0)[0] intercept   : AIC=3509.903, Time=0.06 sec
 ARIMA(0,1,0)(0,0,0)[0]             : AIC=3585.787, Time=0.00 sec
 ARIMA(2,1,1)(0,0,0)[0] intercept   : AIC=3500.610, Time=0.09 sec
 ARIMA(2,1,0)(0,0,0)[0] intercept   : AIC=3540.400, Time=0.02 sec
 ARIMA(3,1,1)(0,0,0)[0] intercept   : AIC=3502.598, Time=0.14 sec
 ARIMA(2,1,2)(0,0,0)[0] intercept   : AIC=3503.442, Time=0.15 sec
 ARIMA(1,1,2)(0,0,0)[0] intercept   : AIC=3505.978, Time=0.19 sec
 ARIMA(3,1,0)(0,0,0)[0] intercept   : AIC=3516.118, Time=0.04 sec
 ARIMA(3,1,2)(0,0,0)[0] intercept   : AIC=3504.888, Time=0.10 sec
 ARIMA(2,1,1)(0,0,0)[0]             : AIC=3500.251, Time=0.04 sec
 ARIMA(1,1,1)(0,0,0)[0]             : AIC=3509.015, Time=0.04 sec
 ARIMA(2,1,0)(0,0,0)[0]             : AIC=3538.500, Time=0.02 sec
 ARIMA(3,1,1)(0,0,0)[0]             : AIC=3502.238, Time=0.09 sec
 ARIMA(2,1,2)(0,0,0)[0]             : AIC=3503.042, Time=0.10 sec
 ARIMA(1,1,0)(0,0,0)[0]             : AIC=3571.973, Time=0.01 sec
 ARIMA(1,1,2)(0,0,0)[0]             : AIC=3508.438, Time=0.05 sec
 ARIMA(3,1,0)(0,0,0)[0]             : AIC=3514.328, Time=0.03 sec
 ARIMA(3,1,2)(0,0,0)[0]             : AIC=3504.226, Time=0.12 sec

Best model:  ARIMA(2,1,1)(0,0,0)[0]          
Total fit time: 1.478 seconds

查看模型信息

开发环境信息:

print(pm.show_versions())
System:
    python: 3.7.10 (default, Mar  6 2021, 16:49:05)  [Clang 12.0.0 (clang-1200.0.32.29)]
executable: /Users/zfwang/.pyenv/versions/3.7.10/envs/ts/bin/python
   machine: Darwin-22.1.0-x86_64-i386-64bit

Python dependencies:
        pip: 22.2.2
 setuptools: 47.1.0
    sklearn: 1.0.2
statsmodels: 0.13.2
      numpy: 1.21.6
      scipy: 1.7.3
     Cython: 0.29.30
     pandas: 1.3.5
     joblib: 1.1.0
   pmdarima: 1.8.5

模型信息:

print(stepwise_fit.summary())
                               SARIMAX Results                                
==============================================================================
Dep. Variable:                      y   No. Observations:                  176
Model:               SARIMAX(2, 1, 1)   Log Likelihood               -1746.125
Date:                Sun, 13 Nov 2022   AIC                           3500.251
Time:                        00:19:45   BIC                           3512.910
Sample:                             0   HQIC                          3505.386
                                - 176                                         
Covariance Type:                  opg                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ar.L1          0.1420      0.109      1.307      0.191      -0.071       0.355
ar.L2         -0.2572      0.125     -2.063      0.039      -0.502      -0.013
ma.L1         -0.9074      0.052    -17.526      0.000      -1.009      -0.806
sigma2      2.912e+07   1.19e-09   2.44e+16      0.000    2.91e+07    2.91e+07
===================================================================================
Ljung-Box (L1) (Q):                   0.01   Jarque-Bera (JB):                 0.48
Prob(Q):                              0.92   Prob(JB):                         0.79
Heteroskedasticity (H):               1.37   Skew:                            -0.12
Prob(H) (two-sided):                  0.23   Kurtosis:                         2.92
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
[2] Covariance matrix is singular or near-singular, with condition number 2.74e+32. Standard errors may be unstable.

序列化模型

pickle

import pickle

# pickle serialize model
with open("arima.pkl", "wb") as pkl:
    pickle.dump(stepwise_fit, pkl)

# pickle load model
with open("arima.pkl", "rb") as pkl:
    pickle_preds = pickle.load(pkl).predict(n_periods = 5)

joblib

import joblib

# joblib serialize model
with open("arima.pkl", "wb") as pkl:
    joblib.dump(stepwise_fit, pkl)

# joblib load model
with open("arima.pkl", "rb") as pkl:
    joblib_preds = joblib.load(pkl).predict(n_periods = 5)

对比 pickle 和 joblib 结果

np.allclose(pickle_preds, joblib_preds)

使用新的观测样本更新模型

# data
wineind = load_wineind().astype(np.float64)
train, test = wineind[:125], wineind[125:]

# 拟合 stepwise auto-ARIMA
stepwise_fit = pm.auto_arima(
    y = wineind,
    start_p = 1,
    max_p = 3,
    start_q = 1,
    max_q = 3,
    seasonal = True,
    d = 1,
    D = 1,
    trace = True,
    error_action = "ignore",
    suppress_warnings = True,  # 收敛信息
    stepwise = True,
)

# ARIMA model
arima = pm.ARIMA(order = (2, 1, 1), seasonal_order = (0, 0, 0, 0))
arima.fit(train)

# pickle serialize model
with open("arima.pkl", "wb") as pkl:
    pickle.dump(arima, pkl)

# pickle load model
with open("arima.pkl", "rb") as pkl:
    arima = pickle.load(pkl)
    pickle_preds = arima.predict(n_periods = 5)

# 更新模型
arima.update(test)

# pickle serialize model
with open("arima.pkl", "wb") as pkl:
    pickle.dump(arima, pkl)

auto_arima 使用

auto_arima 函数根据提供的信息准则(AIC、AICc、BIC 或 HQIC)将最佳 ARIMA 模型拟合到单变量时间序列。 该函数在提供的约束范围内对可能的模型和季节性阶数(seasonal orders) 执行搜索(逐步或并行),并选择最小化给定指标的参数

auto_arima 函数有很多参数需要调整,模型拟合的结果在很大程度上取决于其中的一些参数

了解 p, d 和 q

ARIMA 模型的一般形式为 $ARIMA(p, d, q)$,参数 $p$$q$ 可以用函数 auto_arima 进行迭代搜索, 但差分项 $d$ 需要一组特殊的平稳性测试来估计

差分项 d

差分计算:

import pmdarima as pm
from pmdarima.utils import c, diff

# lag 1, diff 1
x = pm.c(10, 4, 2, 9, 34)
diff(x, lag = 1, differences = 1)

平稳性检验

自相关图:

import pmdarima as pm
from pmdarima import datasets

y = datasets.load_lynx()
pm.plot_acf(y)

ADFTest:

from pmdarima.arima.stationarity import ADFTest

adf_test = ADFTest(alpha = 0.05)
p_val, should_diff = adf_test.should_diff(y)  # (0.01, False)

PPTest:


KPSSTest:


$d$ 的估计:

from pmdarima.arima.utils import ndiffs

# ADF test
n_adf = ndiffs(y, test = "adf")

# KPSS test
n_kpss = ndiffs(y, test = "kpss")

# PP test
n_pp = ndiffs(y, test = "pp")
assert n_adf == n_kpss == n_pp == 0

在 ARIMA 模型的情况下,使数据平稳的最简单方法是允许 auto_arima 发挥其魔力,估计适当的 d 值, 并相应地区分时间序列。然而,其他用于强制平稳性的常见转换包括(有时相互结合):

了解 P, Q, D 和 m

季节性 ARIMA 模型有三个类似于 p, d, d 的参数:

PQ 的估计类似于通过 auto_arima 模型估计 pq,而 D 的估计可以通过 Canova-Hansen 检验,

季节性差分项 D 的估计

默认情况下,如果在 auto_arima 中设置 seasonal=TrueD 会被估计,但是要设置好 mmax_D

from pmdarima.datasets import load_lynx
from pmdarima.arima.utils import nsdiffs

# data
lynx = load_lynx()

# Canova-Hansen test
D = nsdiffs(
    lynx,
    m = 10,
    max_D = 12,
    test = "ch",
)

# OCSB test
nsdiffs(
    lynx,
    m = 10,
    max_D = 12,
    test = "ocsb"
)

设置 m

m 参数与每个季节周期的观察次数有关,并且是一个必须先验已知的参数。 通常,m 将对应于一些经常性的周期性,例如:

import pmdarima as pm

# data
data = pm.datasets.load_wineind()
train, test = data[:150], data[150:]

# model
m1 = pm.auto_arima(
    train, 
    error_action = "ignore",
    seasonal = True, 
    m = 1
)
m12 = pm.auto_arima(
    train, 
    error_action = "ignore",
    seasonal = True, 
    m = 12
)

并行和逐步

auto_arima 函数有两种模式:

基本步骤:

  1. 尝试从四个可能得模型开始
    • ARIMA(2, d, 2) if m=1 and ARIMA(2, d, 2)(1, D, 1) if m>1
    • ARIMA(0, d, 0) if m=1 and ARIMA(0, d, 0)(0, D, 0) if m>1
    • ARIMA(1, d, 0) if m=1 and ARIMA(1, d, 0)(1, D, 0) if m>1
    • ARIMA(0, d, 1) if m=1 and ARIMA(0, d, 1)(0, D, 1) if m>1
  2. 考虑其他的模型
    • Where one of p, q, P and Q is allowed to vary by ±1 from the current best model
    • Where p and q both vary by ±1 from the current best model
    • Where P and Q both vary by ±1 from the current best model

StepwiseContext

import pmdarima as pm
from pmdarima.arima import StepwiseContext

# data
data = pm.datasets.load_wineind()
train, test = data[:150], data[150:]

# model
with StepwiseContext(max_dur = 15):
    model = pm.auto_arima(
        train, 
        stepwise = True, 
        error_action = "ignore", 
        seasonal = True, 
        m = 12
    )

Pipeline

可以应用的模型:

import pmdarima as pm
from pmdarima.pipeline import Pipeline
from pmdarima.preprocessing import BoxCoxEndogTransformer

# data
wineind = pm.datasets.load_wineind()
train, test = wineind[:150], wineind[150:]

# pipeline
pipeline = Pipeline([
    ("boxcox", BoxCoxEndogTransformer()),
    ("model", pm.AutoARIMA(seasonal = True, suppress_warnings = True))
])

# model fit
pipeline.fit(train)

# model predict
pipeline.predict(n_periods = 5)

参考